Skip to content
  • (+91) 9409548155
  • support@appdividend.com
  • Home
  • Pricing
  • Instructor
  • Tutorials
    • Laravel
    • Python
    • React
    • Javascript
    • Angular
  • Become A Tutor
  • About Us
  • Contact Us
Menu
  • Home
  • Pricing
  • Instructor
  • Tutorials
    • Laravel
    • Python
    • React
    • Javascript
    • Angular
  • Become A Tutor
  • About Us
  • Contact Us
  • Home
  • Pricing
  • Instructor
  • Tutorials
    • Laravel
    • Python
    • React
    • Javascript
    • Angular
  • Become A Tutor
  • About Us
  • Contact Us
Python

Numpy.zeros_like() Method

  • 06 Oct, 2025
  • Com 0
Numpy.zeros_like() Method in Python

The numpy.zeros_like() method creates a new array of zeros with the same shape and type as a given input array or array-like object.

Creating a zeros array in Numpy

import numpy as np

arr = np.array([[1, 2, 3],
                [4, 5, 6]])

zeros_array = np.zeros_like(arr)

print(zeros_array)

# Output:
# [[0 0 0]
#  [0 0 0]]

You can see that we create a 2D array of 0s from the input array with the same shape, 2×3, and matching int64 dtype (the default on most systems).

Syntax

numpy.zeros_like(arr, 
                 dtype=None, 
                 order='K', 
                 subok=True, 
                 shape=None)

Parameters

Argument Description
arr (required, array_like) It represents an array or array-like object.

You can take it as a reference array from which the zeros_like() method will create a new array filled with 0s with the same shape and size as arr.

dtype (data-type, optional) It overrides the dtype of the resulting array. By default, it is an int64, but you can override it based on your requirements.
order ({‘C’, ‘F’, ‘A’, ‘K’}, optional) It controls the memory layout of the output array. By default, it is “k”.
subok (bool, optional)

If True (default), they are subclasses of ndarray.

If False, the output is always a base ndarray.

shape (int or sequence of ints, optional)

It overrides the shape of the resulting array.

Overriding dtype

Even if the input array contains float values, you can change the output array’s type to int64 by passing the dtype=int argument.

Changing the dtype of output zeros numpy array

import numpy as np

arr = np.array([1.9, 2.1, 3.5])

zeros_int = np.zeros_like(arr, dtype=int)

print(zeros_int)

# Output: [0 0 0]

Specifying memory order

The ‘order’ control defines the layout; ‘K’ preserves the input’s order for optimal memory access.

import numpy as np

arr = np.array([[1, 2], [3, 4]], order='F')  # Fortran-contiguous

z_c = np.zeros_like(arr, order='C')  # Force C-order

print(z_c)
# Output: [[0 0] [0 0]], C-contiguous

z_k = np.zeros_like(arr)

print(z_k)
# Output: [[0 0] [0 0]], K-contiguous
# Default 'K' preserves 'F'

Empty array input

If the input is an empty array, this method handles empty shapes correctly, producing an empty zero array.

empty zeros array

import numpy as np

empty_array = np.array([])  # Shape (0,)

empty_zeros = np.zeros_like(empty_array)

print(empty_zeros)

# Output: []

That’s all!

Post Views: 2
Share on:
Krunal Lathiya

With a career spanning over eight years in the field of Computer Science, Krunal’s expertise is rooted in a solid foundation of hands-on experience, complemented by a continuous pursuit of knowledge.

How to Read and Write JSON to a File in Python
Numpy.convolve() Method

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Address: TwinStar, South Block – 1202, 150 Ft Ring Road, Nr. Nana Mauva Circle, Rajkot(360005), Gujarat, India

Call: (+91) 9409548155

Email: support@appdividend.com

Online Platform

  • Pricing
  • Instructors
  • FAQ
  • Refund Policy
  • Support

Links

  • About Us
  • Contact Us
  • Privacy Policy
  • Terms of services

Tutorials

  • Angular
  • React
  • Python
  • Laravel
  • Javascript
Copyright @2024 AppDividend. All Rights Reserved
Appdividend