Pandas DataFrame head() method returns the top n rows of a DataFrame or Series where n is a user input value. It is helpful for quickly testing if your object has the right type of data in it. For negative values of n, the head() function returns all rows except the last n rows, equivalent to df[:-n].
Syntax
DataFrame.head(n=5) (n=5 is default we can set any value)
Parameters
The head() method in python contains only one parameter, n. It is an optional parameter. By setting it, we fix the number of rows we want from the DataFrame.
Return Value
The head() function returns n rows from the DataFrame.
Example 1
import pandas as pd
import numpy as np
data_set = pd.DataFrame(
{'Name': ['Rohit', 'Mohit', 'Shubh', 'Pranav', 'Shivam', 'Prince'],
'Class': ['10', '09', '11', '12', '05', '07']})
print(data_set.head(5))
Output
Name Class 0 Rohit 10 1 Mohit 09 2 Shubh 11 3 Pranav 12 4 Shivam 05
Here we can see that we have created a DataFrame data_set, which holds the values as names of 6 students and their respective classes in which they study.
Suppose we want to extract the data of only the top 5 students and not all the students. When this problem arises, we can use the head() method, defined in the Pandas library, to extract the top n rows of a dataset.
Example 2
Write a program to use the head() function when the DataFrame consists of 5 columns.
import pandas as pd
import numpy as np
data_frame = pd.DataFrame(
{'Name': ['Rohit', 'Mohit', 'Shubh', 'Pranav', 'Shivam'],
'Class': ['10', '09', '11', '12', '05'],
'Roll no': ['25', '37', '48', '47', '46'],
'Fav Subject': ['C++', 'Python', 'Kotlin', 'C', 'Java'],
'Favourite Sports': ['Football', 'Basketball', 'Hockey', 'Cricket', 'Handball']
})
print("DataFrame::\n")
print(data_frame)
print("\n")
print("Top 3 students::")
print("\n")
print(data_frame.head(3))
Output
DataFrame:: Name Class Roll no Fav Subject Favourite Sports 0 Rohit 10 25 C++ Football 1 Mohit 09 37 Python Basketball 2 Shubh 11 48 Kotlin Hockey 3 Pranav 12 47 C Cricket 4 Shivam 05 46 Java Handball Top 3 students:: Name Class Roll no Fav Subject Favourite Sports 0 Rohit 10 25 C++ Football 1 Mohit 09 37 Python Basketball 2 Shubh 11 48 Kotlin Hockey
Here we can see five columns in the DataFrame, and with the help of the head function, we are showing the data of the top 3 students.
Example 3
If you don’t pass any argument to the DataFrame head() function, you will get the default first five rows in return.
import pandas as pd
import numpy as np
data_frame = pd.DataFrame(
{'Name': ['Rohit', 'Mohit', 'Shubh', 'Pranav', 'Shivam'],
'Class': ['10', '09', '11', '12', '05'],
'Roll no': ['25', '37', '48', '47', '46'],
'Fav Subject': ['C++', 'Python', 'Kotlin', 'C', 'Java'],
'Favourite Sports': ['Football', 'Basketball', 'Hockey', 'Cricket', 'Handball']
})
print("DataFrame::\n")
print(data_frame)
print("\n")
print(data_frame.head())
Output
DataFrame:: Name Class Roll no Fav Subject Favourite Sports 0 Rohit 10 25 C++ Football 1 Mohit 09 37 Python Basketball 2 Shubh 11 48 Kotlin Hockey 3 Pranav 12 47 C Cricket 4 Shivam 05 46 Java Handball Name Class Roll no Fav Subject Favourite Sports 0 Rohit 10 25 C++ Football 1 Mohit 09 37 Python Basketball 2 Shubh 11 48 Kotlin Hockey 3 Pranav 12 47 C Cricket 4 Shivam 05 46 Java Handball
That’s it.