How to Fix ValueError: NaTType does not support utcoffset

Diagram of How to Fix ValueError: NaTType does not support utcoffset

Diagram

ValueError: NaTType does not support utcoffset error occurs in Python when “you try to set the utcoffset property of a NaTType object.”

A NaTType object is a particular datetime object representing a missing date or time. It does not have a timezone, so it does not have a utcoffset property.

NaT is used to represent missing or null datetime values in Pandas.

When working with pandas in Python, especially with datetime-like objects containing a NaT (“Not a Time”).

How to fix it?

Here are two ways to fix the ValueError: NaTType does not support utcoffset error.

  1. Drop the NaT values
  2. Fill in the NaT values

Solution 1: Drop the NaT values

To drop the NaT values from Series or DataFrame, you can “use the dropna() method.”

For Series

import pandas as pd

# Sample Series with NaT values
s = pd.Series([pd.Timestamp('2023-01-01'), pd.NaT,
               pd.Timestamp('2023-01-03')])

# Drop NaT values
s = s.dropna()

print(s)

Output

0  2023-01-01
2  2023-01-03

dtype: datetime64[ns]

For DataFrame

import pandas as pd

# Sample DataFrame with NaT values in 'dates' column
df = pd.DataFrame({
   'dates': [pd.Timestamp('2023-01-01'), pd.NaT, pd.Timestamp('2023-01-03')],
   'values': [10, 20, 30]
})

# Drop NaT values
df = df.dropna()

print(df)

Output

   dates      values
0  2023-01-01   10
2  2023-01-03   30

Solution 2: Fill in the NaT values

To fill the NaT values instead of dropping them, you can “use the fillna() method.”

For Series

import pandas as pd

# Sample Series with NaT values
s = pd.Series([pd.Timestamp('2023-01-01'), pd.NaT,
               pd.Timestamp('2023-01-03')])

s = s.fillna(pd.Timestamp('2023-01-01'))

print(s)

Output

0  2023-01-01
1  2023-01-01
2  2023-01-03
dtype: datetime64[ns]

For DataFrame

import pandas as pd

# Sample DataFrame with NaT values in 'dates' column
df = pd.DataFrame({
  'dates': [pd.Timestamp('2023-01-01'), pd.NaT, pd.Timestamp('2023-01-03')],
  'values': [10, 20, 30]
})

df['dates'] = df['dates'].fillna(pd.Timestamp('2023-01-01'))

print(df)

Output

    dates      values
0  2023-01-01    10
1  2023-01-01    20
2  2023-01-03    30

Conclusion

By dropping or filling the NaT values, you ensure that subsequent operations on the datetime-like objects won’t face the “NaTType does not support utcoffset” error.

Related posts

AttributeError: ‘NaTType’ object has no attribute ‘isna’

AttributeError: can only use .dt accessor with datetimelike values

AttributeError: module ‘datetime’ has no attribute ‘strptime’

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.